]> git.alsa-project.org Git - alsa-lib.git/commitdiff
Uros Bizjak <uros@kss-loka.si>
authorJaroslav Kysela <perex@perex.cz>
Sat, 11 Dec 1999 20:21:55 +0000 (20:21 +0000)
committerJaroslav Kysela <perex@perex.cz>
Sat, 11 Dec 1999 20:21:55 +0000 (20:21 +0000)
Sat, 11 Dec 1999 19:16:00 +0100 (CET)
Attached is a diff for new adpcm implementation. Sun's CCITT g721 adpcm
codec is NOT IMA adpcm. IMA codec is very simple and better than g721, so
I replaced g721 with included one. Implementation has been tested against
some test files which I got, and should work according to IMA
specification.

src/pcm/plugin/adpcm.c

index acd1e04ba922dd114c848f4dbfcc74810a444314..3ef51b0be74612b5f22b12354ed481ca31dbe713 100644 (file)
@@ -1,9 +1,11 @@
 /*
  *  Ima-ADPCM conversion Plug-In Interface
- *  Copyright (c) 1999 by Jaroslav Kysela <perex@suse.cz>
- *                        Uros Bizjak <uros@kss-loka.si>
+ *  Copyright (c) 1999 by Uros Bizjak <uros@kss-loka.si>
+ *                        Jaroslav Kysela <perex@suse.cz>
  *
- *  Based on reference implementation by Sun Microsystems, Inc.
+ *  Based on Version 1.2, 18-Dec-92 implementation of Intel/DVI ADPCM code
+ *  by Jack Jansen, CWI, Amsterdam <Jack.Jansen@cwi.nl>, Copyright 1992
+ *  by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
  *
  *   This library is free software; you can redistribute it and/or modify
  *   it under the terms of the GNU Library General Public License as
  *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  *
  */
-  
+
+/*
+These routines convert 16 bit linear PCM samples to 4 bit ADPCM code
+and vice versa. The ADPCM code used is the Intel/DVI ADPCM code which
+is being recommended by the IMA Digital Audio Technical Working Group.
+
+The algorithm for this coder was taken from:
+Proposal for Standardized Audio Interchange Formats,
+IMA compatability project proceedings, Vol 2, Issue 2, May 1992.
+
+- No, this is *not* a G.721 coder/decoder. The algorithm used by G.721
+  is very complicated, requiring oodles of floating-point ops per
+  sample (resulting in very poor performance). I have not done any
+  tests myself but various people have assured my that 721 quality is
+  actually lower than DVI quality.
+
+- No, it probably isn't a RIFF ADPCM decoder either. Trying to decode
+  RIFF ADPCM with these routines seems to result in something
+  recognizable but very distorted.
+
+- No, it is not a CDROM-XA coder either, as far as I know. I haven't
+  come across a good description of XA yet.
+ */
+
 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <byteswap.h>
 #include "../pcm_local.h"
 
-static short qtab_721[7] = { -124, 80, 178, 246, 300, 349, 400 };
-
-/*
- * Maps G.721 code word to reconstructed scale factor normalized log
- * magnitude values.
- */
-static short _dqlntab[16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
-       425, 373, 323, 273, 213, 135, 4, -2048
-};
-
-/* Maps G.721 code word to log of scale factor multiplier. */
-static short _witab[16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
-       1122, 355, 198, 112, 64, 41, 18, -12
-};
-/*
- * Maps G.721 code words to a set of values whose long and short
- * term averages are computed and then compared to give an indication
- * how stationary (steady state) the signal is.
- */
-static short _fitab[16] = { 0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
-       0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0
-};
-
-
-static short power2[15] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
-       0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
+/* First table lookup for Ima-ADPCM quantizer */
+static char IndexAdjust[8] = { -1, -1, -1, -1, 2, 4, 6, 8 };
+
+/* Second table lookup for Ima-ADPCM quantizer */
+static short StepSize[89] = {
+       7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
+       19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
+       50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
+       130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
+       337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
+       876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
+       2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
+       5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
+       15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
 };
 
-/*
- * The following is the definition of the state structure
- * used by the G.721/G.723 encoder and decoder to preserve their internal
- * state between successive calls.  The meanings of the majority
- * of the state structure fields are explained in detail in the
- * CCITT Recommendation G.721.  The field names are essentially indentical
- * to variable names in the bit level description of the coding algorithm
- * included in this Recommendation.
- */
-
-typedef struct g72x_state {
-       long yl;                /* Locked or steady state step size multiplier. */
-       short yu;               /* Unlocked or non-steady state step size multiplier. */
-       short dms;              /* Short term energy estimate. */
-       short dml;              /* Long term energy estimate. */
-       short ap;               /* Linear weighting coefficient of 'yl' and 'yu'. */
-
-       short a[2];             /* Coefficients of pole portion of prediction filter. */
-       short b[6];             /* Coefficients of zero portion of prediction filter. */
-       short pk[2];            /*
-                                * Signs of previous two samples of a partially
-                                * reconstructed signal.
-                                */
-       short dq[6];            /*
-                                * Previous 6 samples of the quantized difference
-                                * signal represented in an internal floating point
-                                * format.
-                                */
-       short sr[2];            /*
-                                * Previous 2 samples of the quantized difference
-                                * signal represented in an internal floating point
-                                * format.
-                                */
-       char td;                /* delayed tone detect, new in 1988 version */
-} g72x_state_t;
+typedef struct adpcm_state {
+       int pred_val;           /* Calculated predicted value */
+       int step_idx;           /* Previous StepSize lookup index */
+       unsigned int io_buffer; /* input / output bit packing buffer */
+       int io_shift;           /* shift input / output buffer */
+} adpcm_state_t;
 
-/*
- * quan()
- *
- * quantizes the input val against the table of size short integers.
- * It returns i if table[i - 1] <= val < table[i].
- *
- * Using linear search for simple coding.
- */
-static inline int quan( int val, short *table, int size)
+static void adpcm_init_state(adpcm_state_t * state_ptr)
 {
-       int i;
-
-       for (i = 0; i < size; i++)
-               if (val < *table++)
-                       break;
-       return (i);
+       state_ptr->pred_val = 0;
+       state_ptr->step_idx = 0;
+       state_ptr->io_buffer = 0;
+       state_ptr->io_shift = 4;
 }
 
-/*
- * fmult()
- *
- * returns the integer product of the 14-bit integer "an" and
- * "floating point" representation (4-bit exponent, 6-bit mantissa) "srn".
- */
-static inline int fmult( int an, int srn)
+static inline char adpcm_encoder(int sl, adpcm_state_t * state)
 {
-       short anmag, anexp, anmant;
-       short wanexp, wanmant;
-       short retval;
+       short diff;             /* Difference between sl and predicted sample */
+       short pred_diff;        /* Predicted difference to next sample */
 
-       anmag = (an > 0) ? an : ((-an) & 0x1FFF);
-       anexp = quan(anmag, power2, 15) - 6;
-       anmant = (anmag == 0) ? 32 :
-           (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
-       wanexp = anexp + ((srn >> 6) & 0xF) - 13;
-
-       wanmant = (anmant * (srn & 077) + 0x30) >> 4;
-       retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
-           (wanmant >> -wanexp);
-
-       return (((an ^ srn) < 0) ? -retval : retval);
-}
+       unsigned char sign;     /* sign of diff */
+       short step;             /* holds previous StepSize value */
+       unsigned char adjust_idx;       /* Index to IndexAdjust lookup table */
 
-/*
- * predictor_zero()
- *
- * computes the estimated signal from 6-zero predictor.
- *
- */
-static inline int predictor_zero(g72x_state_t *state_ptr)
-{
        int i;
-       int sezi;
-
-       sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
-       for (i = 1; i < 6; i++) /* ACCUM */
-               sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
-       return (sezi);
-}
-
-/*
- * predictor_pole()
- *
- * computes the estimated signal from 2-pole predictor.
- *
- */
-static inline int predictor_pole(g72x_state_t *state_ptr)
-{
-       return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
-               fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
-}
 
-/*
- * step_size()
- *
- * computes the quantization step size of the adaptive quantizer.
- *
- */
-static inline int step_size(g72x_state_t *state_ptr)
-{
-       int y;
-       int dif;
-       int al;
-
-       if (state_ptr->ap >= 256)
-               return (state_ptr->yu);
-       else {
-               y = state_ptr->yl >> 6;
-               dif = state_ptr->yu - y;
-               al = state_ptr->ap >> 2;
-               if (dif > 0)
-                       y += (dif * al) >> 6;
-               else if (dif < 0)
-                       y += (dif * al + 0x3F) >> 6;
-               return (y);
+       /* Compute difference to previous predicted value */
+       diff = sl - state->pred_val;
+       sign = (diff < 0) ? 0x8 : 0x0;
+       if (sign) {
+               diff = -diff;
        }
-}
-
-/*
- * quantize()
- *
- * Given a raw sample, 'd', of the difference signal and a
- * quantization step size scale factor, 'y', this routine returns the
- * ADPCM codeword to which that sample gets quantized.  The step
- * size scale factor division operation is done in the log base 2 domain
- * as a subtraction.
- */
-static inline
-int quantize( int d,           /* Raw difference signal sample */
-            int y,             /* Step size multiplier */
-            short *table,      /* quantization table */
-            int size)
-{                              /* table size of short integers */
-       short dqm;              /* Magnitude of 'd' */
-       short exp;              /* Integer part of base 2 log of 'd' */
-       short mant;             /* Fractional part of base 2 log */
-       short dl;               /* Log of magnitude of 'd' */
-       short dln;              /* Step size scale factor normalized log */
-       int i;
 
        /*
-        * LOG
+        * This code *approximately* computes:
+        *    adjust_idx = diff * 4 / step;
+        *    pred_diff = (adjust_idx + 0.5) * step / 4;
         *
-        * Compute base 2 log of 'd', and store in 'dl'.
+        * But in shift step bits are dropped. The net result of this is
+        * that even if you have fast mul/div hardware you cannot put it to
+        * good use since the fixup would be too expensive.
         */
-       dqm = abs(d);
-       exp = quan(dqm >> 1, power2, 15);
-       mant = ((dqm << 7) >> exp) & 0x7F;      /* Fractional portion. */
-       dl = (exp << 7) + mant;
 
-       /*
-        * SUBTB
-        *
-        * "Divide" by step size multiplier.
-        */
-       dln = dl - (y >> 2);
+       step = StepSize[state->step_idx];
 
-       /*
-        * QUAN
-        *
-        * Obtain codword i for 'd'.
-        */
-       i = quan(dln, table, size);
-       if (d < 0)              /* take 1's complement of i */
-               return ((size << 1) + 1 - i);
-       else if (i == 0)        /* take 1's complement of 0 */
-               return ((size << 1) + 1);       /* new in 1988 */
-       else
-               return (i);
-}
+       /* Divide and clamp */
+       pred_diff = step >> 3;
+       for (adjust_idx = 0, i = 0x4; i; i >>= 1, step >>= 1) {
+               if (diff >= step) {
+                       adjust_idx |= i;
+                       diff -= step;
+                       pred_diff += step;
+               }
+       }
 
-/*
- * reconstruct()
- *
- * Returns reconstructed difference signal 'dq' obtained from
- * codeword 'dqln' and quantization step size scale factor 'y'.
- * Multiplication is performed in log base 2 domain as addition.
- */
+       /* Update and clamp previous predicted value */
+       state->pred_val += sign ? -pred_diff : pred_diff;
 
-static inline
-int reconstruct( int sign,     /* 0 for non-negative value */
-               int dqln,       /* G.72x codeword */
-               int y)
-{                              /* Step size multiplier */
-       short dql;              /* Log of 'dq' magnitude */
-       short dex;              /* Integer part of log */
-       short dqt;
-       short dq;               /* Reconstructed difference signal sample */
-
-       dql = dqln + (y >> 2);  /* ADDA */
-
-       if (dql < 0) {
-               return ((sign) ? -0x8000 : 0);
-       } else {                /* ANTILOG */
-               dex = (dql >> 7) & 15;
-               dqt = 128 + (dql & 127);
-               dq = (dqt << 7) >> (14 - dex);
-               return ((sign) ? (dq - 0x8000) : dq);
+       if (state->pred_val > 32767) {
+               state->pred_val = 32767;
+       } else if (state->pred_val < -32768) {
+               state->pred_val = -32768;
        }
-}
 
+       /* Update and clamp StepSize lookup table index */
+       state->step_idx += IndexAdjust[adjust_idx];
 
-/*
- * update()
- *
- * updates the state variables for each output code
- */
-static
-void update( int y,            /* quantizer step size */
-           int wi,             /* scale factor multiplier */
-           int fi,             /* for long/short term energies */
-           int dq,             /* quantized prediction difference */
-           int sr,             /* reconstructed signal */
-           int dqsez,          /* difference from 2-pole predictor */
-           g72x_state_t *state_ptr)
-{                              /* coder state pointer */
-       int cnt;
-       short mag, exp;         /* Adaptive predictor, FLOAT A */
-       short a2p = 0;          /* LIMC */
-       short a1ul;             /* UPA1 */
-       short pks1;             /* UPA2 */
-       short fa1;
-       char tr;                /* tone/transition detector */
-       short ylint, thr2, dqthr;
-       short ylfrac, thr1;
-       short pk0;
-
-       pk0 = (dqsez < 0) ? 1 : 0;      /* needed in updating predictor poles */
-
-       mag = dq & 0x7FFF;      /* prediction difference magnitude */
-       /* TRANS */
-       ylint = state_ptr->yl >> 15;    /* exponent part of yl */
-       ylfrac = (state_ptr->yl >> 10) & 0x1F;  /* fractional part of yl */
-       thr1 = (32 + ylfrac) << ylint;  /* threshold */
-       thr2 = (ylint > 9) ? 31 << 10 : thr1;   /* limit thr2 to 31 << 10 */
-       dqthr = (thr2 + (thr2 >> 1)) >> 1;      /* dqthr = 0.75 * thr2 */
-       if (state_ptr->td == 0) /* signal supposed voice */
-               tr = 0;
-       else if (mag <= dqthr)  /* supposed data, but small mag */
-               tr = 0;         /* treated as voice */
-       else                    /* signal is data (modem) */
-               tr = 1;
+       if (state->step_idx < 0) {
+               state->step_idx = 0;
+       } else if (state->step_idx > 88) {
+               state->step_idx = 88;
+       }
+       return (sign | adjust_idx);
+}
 
-       /*
-        * Quantizer scale factor adaptation.
-        */
 
-       /* FUNCTW & FILTD & DELAY */
-       /* update non-steady state step size multiplier */
-       state_ptr->yu = y + ((wi - y) >> 5);
+static inline int adpcm_decoder(unsigned char code, adpcm_state_t * state)
+{
+       short pred_diff;        /* Predicted difference to next sample */
+       short step;             /* holds previous StepSize value */
+       char sign;
 
-       /* LIMB */
-       if (state_ptr->yu < 544)        /* 544 <= yu <= 5120 */
-               state_ptr->yu = 544;
-       else if (state_ptr->yu > 5120)
-               state_ptr->yu = 5120;
+       int i;
 
-       /* FILTE & DELAY */
-       /* update steady state step size multiplier */
-       state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
+       /* Separate sign and magnitude */
+       sign = code & 0x8;
+       code &= 0x7;
 
        /*
-        * Adaptive predictor coefficients.
+        * Computes pred_diff = (code + 0.5) * step / 4,
+        * but see comment in adpcm_coder.
         */
-       if (tr == 1) {          /* reset a's and b's for modem signal */
-               state_ptr->a[0] = 0;
-               state_ptr->a[1] = 0;
-               state_ptr->b[0] = 0;
-               state_ptr->b[1] = 0;
-               state_ptr->b[2] = 0;
-               state_ptr->b[3] = 0;
-               state_ptr->b[4] = 0;
-               state_ptr->b[5] = 0;
-       } else {                /* update a's and b's */
-               pks1 = pk0 ^ state_ptr->pk[0];  /* UPA2 */
-
-               /* update predictor pole a[1] */
-               a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
-               if (dqsez != 0) {
-                       fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
-                       if (fa1 < -8191)        /* a2p = function of fa1 */
-                               a2p -= 0x100;
-                       else if (fa1 > 8191)
-                               a2p += 0xFF;
-                       else
-                               a2p += fa1 >> 5;
-
-                       if (pk0 ^ state_ptr->pk[1])
-                               /* LIMC */
-                               if (a2p <= -12160)
-                                       a2p = -12288;
-                               else if (a2p >= 12416)
-                                       a2p = 12288;
-                               else
-                                       a2p -= 0x80;
-                       else if (a2p <= -12416)
-                               a2p = -12288;
-                       else if (a2p >= 12160)
-                               a2p = 12288;
-                       else
-                               a2p += 0x80;
-               }
 
-               /* TRIGB & DELAY */
-               state_ptr->a[1] = a2p;
-
-               /* UPA1 */
-               /* update predictor pole a[0] */
-               state_ptr->a[0] -= state_ptr->a[0] >> 8;
-               if (dqsez != 0) {
-                       if (pks1 == 0) 
-                               state_ptr->a[0] += 192;
-                       else
-                               state_ptr->a[0] -= 192;
-               }
+       step = StepSize[state->step_idx];
 
-               /* LIMD */
-               a1ul = 15360 - a2p;
-               if (state_ptr->a[0] < -a1ul)
-                       state_ptr->a[0] = -a1ul;
-               else if (state_ptr->a[0] > a1ul)
-                       state_ptr->a[0] = a1ul;
-
-               /* UPB : update predictor zeros b[6] */
-               for (cnt = 0; cnt < 6; cnt++) {
-                       state_ptr->b[cnt] -=
-                                   state_ptr->b[cnt] >> 8;
-                       if (dq & 0x7FFF) {      /* XOR */
-                               if ((dq ^ state_ptr->dq[cnt]) >= 0)
-                                       state_ptr->b[cnt] += 128;
-                               else
-                                       state_ptr->b[cnt] -= 128;
-                       }
+       /* Compute difference and new predicted value */
+       pred_diff = step >> 3;
+       for (i = 0x4; i; i >>= 1, step >>= 1) {
+               if (code & i) {
+                       pred_diff += step;
                }
        }
+       state->pred_val += (sign) ? -pred_diff : pred_diff;
 
-       for (cnt = 5; cnt > 0; cnt--)
-               state_ptr->dq[cnt] = state_ptr->dq[cnt - 1];
-       /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
-       if (mag == 0) {
-               state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
-       } else {
-               exp = quan(mag, power2, 15);
-               state_ptr->dq[0] = (dq >= 0) ?
-                   (exp << 6) + ((mag << 6) >> exp) :
-                   (exp << 6) + ((mag << 6) >> exp) - 0x400;
+       /* Clamp output value */
+       if (state->pred_val > 32767) {
+               state->pred_val = 32767;
+       } else if (state->pred_val < -32768) {
+               state->pred_val = -32768;
        }
 
-       state_ptr->sr[1] = state_ptr->sr[0];
-       /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
-       if (sr == 0) {
-               state_ptr->sr[0] = 0x20;
-       } else if (sr > 0) {
-               exp = quan(sr, power2, 15);
-               state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
-       } else if (sr > -32768) {
-               mag = -sr;
-               exp = quan(mag, power2, 15);
-               state_ptr->sr[0] =
-                   (exp << 6) + ((mag << 6) >> exp) - 0x400;
-       } else
-               state_ptr->sr[0] = 0xFC20;
-
-       /* DELAY A */
-       state_ptr->pk[1] = state_ptr->pk[0];
-       state_ptr->pk[0] = pk0;
-
-       /* TONE */
-       if (tr == 1)            /* this sample has been treated as data */
-               state_ptr->td = 0;      /* next one will be treated as voice */
-       else if (a2p < -11776)  /* small sample-to-sample correlation */
-               state_ptr->td = 1;      /* signal may be data */
-       else                    /* signal is voice */
-               state_ptr->td = 0;
-
-       /*
-        * Adaptation speed control.
-        */
-       state_ptr->dms += (fi - state_ptr->dms) >> 5;   /* FILTA */
-       state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7);  /* FILTB */
-
-       if (tr == 1)
-               state_ptr->ap = 256;
-       else if (y < 1536)      /* SUBTC */
-               state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
-       else if (state_ptr->td == 1)
-               state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
-       else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
-                (state_ptr->dml >> 3))
-               state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
-       else
-               state_ptr->ap += (-state_ptr->ap) >> 4;
-}
+       /* Find new StepSize index value */
+       state->step_idx += IndexAdjust[code];
 
-/*
- * g72x_init_state()
- *
- * This routine initializes and/or resets the g72x_state structure
- * pointed to by 'state_ptr'.
- * All the initial state values are specified in the CCITT G.721 document.
- */
-static inline void g72x_init_state(g72x_state_t *state_ptr)
-{
-       int cnta;
-
-       state_ptr->yl = 34816;
-       state_ptr->yu = 544;
-       state_ptr->dms = 0;
-       state_ptr->dml = 0;
-       state_ptr->ap = 0;
-       for (cnta = 0; cnta < 2; cnta++) {
-               state_ptr->a[cnta] = 0;
-               state_ptr->pk[cnta] = 0;
-               state_ptr->sr[cnta] = 32;
-       }
-       for (cnta = 0; cnta < 6; cnta++) {
-               state_ptr->b[cnta] = 0;
-               state_ptr->dq[cnta] = 32;
+       if (state->step_idx < 0) {
+               state->step_idx = 0;
+       } else if (state->step_idx > 88) {
+               state->step_idx = 88;
        }
-       state_ptr->td = 0;
-}
-
-/*
- * g721_encoder()
- *
- * Encodes the input vale of linear PCM and returns the resulting code.
- */
-static inline int g721_encoder( int sl, g72x_state_t *state_ptr)
-{
-       short sezi, se, sez;    /* ACCUM */
-       short d;                /* SUBTA */
-       short sr;               /* ADDB */
-       short y;                /* MIX */
-       short dqsez;            /* ADDC */
-       short dq, i;
-
-       sl >>= 2;               /* 14-bit dynamic range */
-
-       sezi = predictor_zero(state_ptr);
-       sez = sezi >> 1;
-       se = (sezi + predictor_pole(state_ptr)) >> 1;   /* estimated signal */
-
-       d = sl - se;            /* estimation difference */
-
-       /* quantize the prediction difference */
-       y = step_size(state_ptr);       /* quantizer step size */
-       i = quantize(d, y, qtab_721, 7);        /* i = ADPCM code */
-
-       dq = reconstruct(i & 8, _dqlntab[i], y);        /* quantized est diff */
-
-       sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;   /* reconst. signal */
-
-       dqsez = sr + sez - se;  /* pole prediction diff. */
-
-       update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
-
-       return (i);
-}
-
-/*
- * g721_decoder()
- *
- * Description:
- *
- * Decodes a 4-bit code of G.721 encoded data of i and
- * returns the resulting linear PCM
- */
-static inline int g721_decoder( int i, g72x_state_t *state_ptr)
-{
-       short sezi, sei, sez, se;       /* ACCUM */
-       short y;                /* MIX */
-       short sr;               /* ADDB */
-       short dq;
-       short dqsez;
-
-       i &= 0x0f;              /* mask to get proper bits */
-       sezi = predictor_zero(state_ptr);
-       sez = sezi >> 1;
-       sei = sezi + predictor_pole(state_ptr);
-       se = sei >> 1;          /* se = estimated signal */
-
-       y = step_size(state_ptr);       /* dynamic quantizer step size */
-
-       dq = reconstruct(i & 0x08, _dqlntab[i], y);     /* quantized diff. */
-
-       sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
-
-       dqsez = sr - se + sez;  /* pole prediction diff. */
-
-       update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
-
-       return (sr << 2);       /* sr was 14-bit dynamic range */
+       return (state->pred_val);
 }
 
 /*
@@ -585,304 +210,473 @@ typedef enum {
        _ADPCM_U16LE,
        _ADPCM_S16BE,
        _ADPCM_U16BE
-} combination_t; 
+} combination_t;
+
 struct adpcm_private_data {
        combination_t cmd;
-       g72x_state_t state;
+       adpcm_state_t state;
 };
 
-static void adpcm_conv_u8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_u8bit_adpcm(adpcm_state_t * state_ptr,
+                                  unsigned char *src_ptr,
                                   unsigned char *dst_ptr, size_t size)
 {
        unsigned int pcm;
 
        while (size-- > 0) {
                pcm = ((*src_ptr++) ^ 0x80) << 8;
-               *dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
+
+               state_ptr->io_buffer |=
+                   adpcm_encoder((signed short) (pcm),
+                                 state_ptr) << state_ptr->io_shift;
+               if (!(state_ptr->io_shift)) {
+                       *dst_ptr++ = state_ptr->io_buffer & 0xff;
+                       state_ptr->io_buffer = 0;
+               }
+               state_ptr->io_shift ^= 4;
+       }
+       if (!(state_ptr->io_shift)) {
+               *dst_ptr = state_ptr->io_buffer & 0xf0;
        }
 }
 
-static void adpcm_conv_s8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_s8bit_adpcm(adpcm_state_t * state_ptr,
+                                  unsigned char *src_ptr,
                                   unsigned char *dst_ptr, size_t size)
 {
        unsigned int pcm;
 
        while (size-- > 0) {
                pcm = *src_ptr++ << 8;
-               *dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
+
+               state_ptr->io_buffer |=
+                   adpcm_encoder((signed short) (pcm),
+                                 state_ptr) << state_ptr->io_shift;
+               if (!(state_ptr->io_shift)) {
+                       *dst_ptr++ = state_ptr->io_buffer & 0xff;
+                       state_ptr->io_buffer = 0;
+               }
+               state_ptr->io_shift ^= 4;
+       }
+       if (!(state_ptr->io_shift)) {
+               *dst_ptr = state_ptr->io_buffer & 0xf0;
        }
 }
 
-static void adpcm_conv_s16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+static void adpcm_conv_s16bit_adpcm(adpcm_state_t * state_ptr,
+                                   unsigned short *src_ptr,
                                    unsigned char *dst_ptr, size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_encoder((signed short)(*src_ptr++), state_ptr);
+       while (size-- > 0) {
+               state_ptr->io_buffer |=
+                   adpcm_encoder((signed short) (*src_ptr++),
+                                 state_ptr) << state_ptr->io_shift;
+               if (!(state_ptr->io_shift)) {
+                       *dst_ptr++ = state_ptr->io_buffer & 0xff;
+                       state_ptr->io_buffer = 0;
+               }
+               state_ptr->io_shift ^= 4;
+       }
+       if (!(state_ptr->io_shift)) {
+               *dst_ptr = state_ptr->io_buffer & 0xf0;
+       }
 }
 
-static void adpcm_conv_s16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
-                                        unsigned char *dst_ptr, size_t size)
+static void adpcm_conv_s16bit_swap_adpcm(adpcm_state_t * state_ptr,
+                                        unsigned short *src_ptr,
+                                        unsigned char *dst_ptr,
+                                        size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_encoder((signed short)(bswap_16(*src_ptr++)), state_ptr);
+       while (size-- > 0) {
+               state_ptr->io_buffer |=
+                   adpcm_encoder((signed short) (bswap_16(*src_ptr++)),
+                                 state_ptr) << state_ptr->io_shift;
+               if (!(state_ptr->io_shift)) {
+                       *dst_ptr++ = state_ptr->io_buffer & 0xff;
+                       state_ptr->io_buffer = 0;
+               }
+               state_ptr->io_shift ^= 4;
+       }
+       if (!(state_ptr->io_shift)) {
+               *dst_ptr = state_ptr->io_buffer & 0xf0;
+       }
 }
 
-static void adpcm_conv_u16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+static void adpcm_conv_u16bit_adpcm(adpcm_state_t * state_ptr,
+                                   unsigned short *src_ptr,
                                    unsigned char *dst_ptr, size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_encoder((signed short)((*src_ptr++) ^ 0x8000), state_ptr);
+       while (size-- > 0) {
+               state_ptr->io_buffer |=
+                   adpcm_encoder((signed short) ((*src_ptr++) ^ 0x8000),
+                                 state_ptr) << state_ptr->io_shift;
+               if (!(state_ptr->io_shift)) {
+                       *dst_ptr++ = state_ptr->io_buffer & 0xff;
+                       state_ptr->io_buffer = 0;
+               }
+               state_ptr->io_shift ^= 4;
+       }
+       if (!(state_ptr->io_shift)) {
+               *dst_ptr = state_ptr->io_buffer & 0xf0;
+       }
 }
 
-static void adpcm_conv_u16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
-                                        unsigned char *dst_ptr, size_t size)
+static void adpcm_conv_u16bit_swap_adpcm(adpcm_state_t * state_ptr,
+                                        unsigned short *src_ptr,
+                                        unsigned char *dst_ptr,
+                                        size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_encoder((signed short)(bswap_16((*src_ptr++) ^ 0x8000)), state_ptr);
+       while (size-- > 0) {
+               state_ptr->io_buffer |= adpcm_encoder((signed short)
+
+                                                     (bswap_16
+                                                      ((*src_ptr++) ^
+                                                       0x8000)),
+                                                     state_ptr) <<
+                   state_ptr->io_shift;
+               if (!(state_ptr->io_shift)) {
+                       *dst_ptr++ = state_ptr->io_buffer & 0xff;
+                       state_ptr->io_buffer = 0;
+               }
+               state_ptr->io_shift ^= 4;
+       }
+       if (!(state_ptr->io_shift)) {
+               *dst_ptr = state_ptr->io_buffer & 0xf0;
+       }
 }
 
-static void adpcm_conv_adpcm_u8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_u8bit(adpcm_state_t * state_ptr,
+                                  unsigned char *src_ptr,
                                   unsigned char *dst_ptr, size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_decoder((*src_ptr++) >> 8, state_ptr) ^ 0x80;
+       while (size-- > 0) {
+               if (state_ptr->io_shift) {
+                       state_ptr->io_buffer = *src_ptr++;
+               }
+               *dst_ptr++ =
+                   (adpcm_decoder
+                    ((state_ptr->io_buffer >> state_ptr->io_shift) & 0xf,
+                     state_ptr) >> 8) ^ 0x80;
+               state_ptr->io_shift ^= 4;
+       }
 }
 
-static void adpcm_conv_adpcm_s8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_s8bit(adpcm_state_t * state_ptr,
+                                  unsigned char *src_ptr,
                                   unsigned char *dst_ptr, size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) >> 8;
+       while (size-- > 0) {
+               if (state_ptr->io_shift) {
+                       state_ptr->io_buffer = *src_ptr++;
+               }
+               *dst_ptr++ =
+                   adpcm_decoder(
+                                 (state_ptr->io_buffer >> state_ptr->
+                                  io_shift) & 0xf, state_ptr) >> 8;
+               state_ptr->io_shift ^= 4;
+       }
 }
 
-static void adpcm_conv_adpcm_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_s16bit(adpcm_state_t * state_ptr,
+                                   unsigned char *src_ptr,
                                    unsigned short *dst_ptr, size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr);
+       while (size-- > 0) {
+               if (state_ptr->io_shift) {
+                       state_ptr->io_buffer = *src_ptr++;
+               }
+               *dst_ptr++ =
+                   adpcm_decoder(
+                                 (state_ptr->io_buffer >> state_ptr->
+                                  io_shift) & 0xf, state_ptr);
+               state_ptr->io_shift ^= 4;
+       }
 }
 
-static void adpcm_conv_adpcm_swap_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
-                                        unsigned short *dst_ptr, size_t size)
+static void adpcm_conv_adpcm_swap_s16bit(adpcm_state_t * state_ptr,
+                                        unsigned char *src_ptr,
+                                        unsigned short *dst_ptr,
+                                        size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr));
+       while (size-- > 0) {
+               if (state_ptr->io_shift) {
+                       state_ptr->io_buffer = *src_ptr++;
+               }
+               *dst_ptr++ =
+                   bswap_16(adpcm_decoder
+                            ((state_ptr->io_buffer >> state_ptr->io_shift)
+                             & 0xf, state_ptr));
+               state_ptr->io_shift ^= 4;
+       }
 }
 
-static void adpcm_conv_adpcm_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_u16bit(adpcm_state_t * state_ptr,
+                                   unsigned char *src_ptr,
                                    unsigned short *dst_ptr, size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) ^ 0x8000;
+       while (size-- > 0) {
+               if (state_ptr->io_shift) {
+                       state_ptr->io_buffer = *src_ptr++;
+               }
+               *dst_ptr++ =
+                   adpcm_decoder(
+                                 (state_ptr->io_buffer >> state_ptr->
+                                  io_shift) & 0xf, state_ptr) ^ 0x8000;
+               state_ptr->io_shift ^= 4;
+       }
 }
 
-static void adpcm_conv_adpcm_swap_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
-                                        unsigned short *dst_ptr, size_t size)
+static void adpcm_conv_adpcm_swap_u16bit(adpcm_state_t * state_ptr,
+                                        unsigned char *src_ptr,
+                                        unsigned short *dst_ptr,
+                                        size_t size)
 {
-       while (size-- > 0)
-               *dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr) ^ 0x8000);
+       while (size-- > 0) {
+               if (state_ptr->io_shift) {
+                       state_ptr->io_buffer = *src_ptr++;
+               }
+               *dst_ptr++ =
+                   bswap_16(adpcm_decoder
+                            ((state_ptr->io_buffer >> state_ptr->io_shift)
+                             & 0xf, state_ptr) ^ 0x8000);
+               state_ptr->io_shift ^= 4;
+       }
 }
 
-static ssize_t adpcm_transfer(snd_pcm_plugin_t *plugin,
+static ssize_t adpcm_transfer(snd_pcm_plugin_t * plugin,
                              char *src_ptr, size_t src_size,
                              char *dst_ptr, size_t dst_size)
 {
        struct adpcm_private_data *data;
 
        if (plugin == NULL || src_ptr == NULL || src_size < 0 ||
-                             dst_ptr == NULL || dst_size < 0)
+           dst_ptr == NULL || dst_size < 0)
                return -EINVAL;
        if (src_size == 0)
                return 0;
-       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       data = (struct adpcm_private_data *)
+           snd_pcm_plugin_extra_data(plugin);
        if (data == NULL)
                return -EINVAL;
        switch (data->cmd) {
        case _U8_ADPCM:
-               if (dst_size < src_size)
+               if ((dst_size << 1) < src_size)
                        return -EINVAL;
-               adpcm_conv_u8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
-               return src_size;
+               adpcm_conv_u8bit_adpcm(&data->state, src_ptr, dst_ptr,
+                                      src_size);
+               return src_size >> 1;
        case _S8_ADPCM:
-               if (dst_size < src_size)
+               if ((dst_size << 1) < src_size)
                        return -EINVAL;
-               adpcm_conv_s8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
-               return src_size;
+               adpcm_conv_s8bit_adpcm(&data->state, src_ptr, dst_ptr,
+                                      src_size);
+               return src_size >> 1;
        case _S16LE_ADPCM:
-               if ((dst_size << 1) < src_size)
+               if ((dst_size << 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_s16bit_adpcm(&data->state, (short *) src_ptr,
+                                       dst_ptr, src_size >> 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_s16bit_swap_adpcm(&data->state,
+                                            (short *) src_ptr, dst_ptr,
+                                            src_size >> 1);
 #else
 #error "Have to be coded..."
 #endif
-               return src_size >> 1;
+               return src_size >> 2;
        case _U16LE_ADPCM:
-               if ((dst_size << 1) < src_size)
+               if ((dst_size << 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_u16bit_adpcm(&data->state, (short *) src_ptr,
+                                       dst_ptr, src_size >> 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_u16bit_swap_adpcm(&data->state,
+                                            (short *) src_ptr, dst_ptr,
+                                            src_size >> 1);
 #else
 #error "Have to be coded..."
 #endif
-               return src_size >> 1;
+               return src_size >> 2;
        case _S16BE_ADPCM:
-               if ((dst_size << 1) < src_size)
+               if ((dst_size << 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_s16bit_swap_adpcm(&data->state,
+                                            (short *) src_ptr, dst_ptr,
+                                            src_size >> 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_s16bit_adpcm(&data->state, (short *) src_ptr,
+                                       dst_ptr, src_size >> 1);
 #else
 #error "Have to be coded..."
 #endif
-               return src_size >> 1;
+               return src_size >> 2;
        case _U16BE_ADPCM:
-               if ((dst_size << 1) < src_size)
+               if ((dst_size << 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_u16bit_swap_adpcm(&data->state,
+                                            (short *) src_ptr, dst_ptr,
+                                            src_size >> 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+               adpcm_conv_u16bit_adpcm(&data->state, (short *) src_ptr,
+                                       dst_ptr, src_size >> 1);
 #else
 #error "Have to be coded..."
 #endif
-               return src_size >> 1;
+               return src_size >> 2;
        case _ADPCM_U8:
-               if (dst_size < src_size)
+               if ((dst_size >> 1) < src_size)
                        return -EINVAL;
-               adpcm_conv_adpcm_u8bit(&data->state, src_ptr, dst_ptr, src_size);
-               return src_size;
+               adpcm_conv_adpcm_u8bit(&data->state, src_ptr, dst_ptr,
+                                      src_size << 1);
+               return src_size << 1;
        case _ADPCM_S8:
-               if (dst_size < src_size)
+               if ((dst_size >> 1) < src_size)
                        return -EINVAL;
-               adpcm_conv_adpcm_s8bit(&data->state, src_ptr, dst_ptr, src_size);
-               return src_size;
+               adpcm_conv_adpcm_s8bit(&data->state, src_ptr, dst_ptr,
+                                      src_size << 1);
+               return src_size << 1;
        case _ADPCM_S16LE:
-               if ((dst_size >> 1) < src_size)
+               if ((dst_size >> 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_s16bit(&data->state, src_ptr,
+                                       (short *) dst_ptr, src_size << 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr,
+                                            (short *) dst_ptr,
+                                            src_size << 1);
 #else
 #error "Have to be coded..."
 #endif
-               return src_size << 1;
+               return src_size << 2;
        case _ADPCM_U16LE:
-               if ((dst_size >> 1) < src_size)
+               if ((dst_size >> 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_u16bit(&data->state, src_ptr,
+                                       (short *) dst_ptr, src_size << 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr,
+                                            (short *) dst_ptr,
+                                            src_size << 1);
 #else
 #error "Have to be coded..."
 #endif
-               return src_size << 1;
+               return src_size << 2;
        case _ADPCM_S16BE:
-               if ((dst_size >> 1) < src_size)
+               if ((dst_size >> 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr,
+                                            (short *) dst_ptr,
+                                            src_size << 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_s16bit(&data->state, src_ptr,
+                                       (short *) dst_ptr, src_size << 1);
 #else
 #error "Have to be coded..."
 #endif
-               return src_size << 1;
+               return src_size << 2;
        case _ADPCM_U16BE:
-               if ((dst_size >> 1) < src_size)
+               if ((dst_size << 2) < src_size)
                        return -EINVAL;
 #if __BYTE_ORDER == __LITTLE_ENDIAN
-               adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr,
+                                            (short *) dst_ptr,
+                                            src_size << 1);
 #elif __BYTE_ORDER == __BIG_ENDIAN
-               adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+               adpcm_conv_adpcm_u16bit(&data->state, src_ptr,
+                                       (short *) dst_ptr, src_size << 1);
 #else
 #error "Have to be coded..."
 #endif
-               return dst_size << 1;
+               return src_size << 2;
        default:
                return -EIO;
        }
 }
 
-static int adpcm_action(snd_pcm_plugin_t *plugin, snd_pcm_plugin_action_t action)
+static int adpcm_action(snd_pcm_plugin_t * plugin,
+                       snd_pcm_plugin_action_t action)
 {
        struct adpcm_private_data *data;
 
        if (plugin == NULL)
                return -EINVAL;
-       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       data = (struct adpcm_private_data *)
+           snd_pcm_plugin_extra_data(plugin);
        if (action == PREPARE)
-               g72x_init_state(&data->state);
-       return 0;       /* silenty ignore other actions */
+               adpcm_init_state(&data->state);
+       return 0;               /* silenty ignore other actions */
 }
 
-static ssize_t adpcm_src_size(snd_pcm_plugin_t *plugin, size_t size)
+static ssize_t adpcm_src_size(snd_pcm_plugin_t * plugin, size_t size)
 {
        struct adpcm_private_data *data;
 
        if (!plugin || size <= 0)
                return -EINVAL;
-       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       data = (struct adpcm_private_data *)
+           snd_pcm_plugin_extra_data(plugin);
        switch (data->cmd) {
        case _U8_ADPCM:
        case _S8_ADPCM:
+               return size * 2;
        case _ADPCM_U8:
        case _ADPCM_S8:
-               return size;
+               return size / 2;
        case _U16LE_ADPCM:
        case _S16LE_ADPCM:
        case _U16BE_ADPCM:
        case _S16BE_ADPCM:
-               return size * 2;
+               return size * 4;
        case _ADPCM_U16LE:
        case _ADPCM_S16LE:
        case _ADPCM_U16BE:
        case _ADPCM_S16BE:
-               return size / 2;
+               return size / 4;
        default:
                return -EIO;
        }
 }
 
-static ssize_t adpcm_dst_size(snd_pcm_plugin_t *plugin, size_t size)
+static ssize_t adpcm_dst_size(snd_pcm_plugin_t * plugin, size_t size)
 {
        struct adpcm_private_data *data;
 
        if (!plugin || size <= 0)
                return -EINVAL;
-       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       data = (struct adpcm_private_data *)
+           snd_pcm_plugin_extra_data(plugin);
        switch (data->cmd) {
        case _U8_ADPCM:
        case _S8_ADPCM:
+               return size / 2;
        case _ADPCM_U8:
        case _ADPCM_S8:
-               return size;
+               return size * 2;
        case _U16LE_ADPCM:
        case _S16LE_ADPCM:
        case _U16BE_ADPCM:
        case _S16BE_ADPCM:
-               return size / 2;
+               return size / 4;
        case _ADPCM_U16LE:
        case _ADPCM_S16LE:
        case _ADPCM_U16BE:
        case _ADPCM_S16BE:
-               return size * 2;
+               return size * 4;
        default:
                return -EIO;
        }
 }
-int snd_pcm_plugin_build_adpcm(snd_pcm_format_t *src_format,
-                              snd_pcm_format_t *dst_format,
-                              snd_pcm_plugin_t **r_plugin)
+
+int snd_pcm_plugin_build_adpcm(snd_pcm_format_t * src_format,
+                              snd_pcm_format_t * dst_format,
+                              snd_pcm_plugin_t ** r_plugin)
 {
        struct adpcm_private_data *data;
        snd_pcm_plugin_t *plugin;
@@ -929,7 +723,8 @@ int snd_pcm_plugin_build_adpcm(snd_pcm_format_t *src_format,
                                      sizeof(struct adpcm_private_data));
        if (plugin == NULL)
                return -ENOMEM;
-       data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+       data = (struct adpcm_private_data *)
+           snd_pcm_plugin_extra_data(plugin);
        data->cmd = cmd;
        plugin->transfer = adpcm_transfer;
        plugin->src_size = adpcm_src_size;