/*
* Ima-ADPCM conversion Plug-In Interface
- * Copyright (c) 1999 by Jaroslav Kysela <perex@suse.cz>
- * Uros Bizjak <uros@kss-loka.si>
+ * Copyright (c) 1999 by Uros Bizjak <uros@kss-loka.si>
+ * Jaroslav Kysela <perex@suse.cz>
*
- * Based on reference implementation by Sun Microsystems, Inc.
+ * Based on Version 1.2, 18-Dec-92 implementation of Intel/DVI ADPCM code
+ * by Jack Jansen, CWI, Amsterdam <Jack.Jansen@cwi.nl>, Copyright 1992
+ * by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License as
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
-
+
+/*
+These routines convert 16 bit linear PCM samples to 4 bit ADPCM code
+and vice versa. The ADPCM code used is the Intel/DVI ADPCM code which
+is being recommended by the IMA Digital Audio Technical Working Group.
+
+The algorithm for this coder was taken from:
+Proposal for Standardized Audio Interchange Formats,
+IMA compatability project proceedings, Vol 2, Issue 2, May 1992.
+
+- No, this is *not* a G.721 coder/decoder. The algorithm used by G.721
+ is very complicated, requiring oodles of floating-point ops per
+ sample (resulting in very poor performance). I have not done any
+ tests myself but various people have assured my that 721 quality is
+ actually lower than DVI quality.
+
+- No, it probably isn't a RIFF ADPCM decoder either. Trying to decode
+ RIFF ADPCM with these routines seems to result in something
+ recognizable but very distorted.
+
+- No, it is not a CDROM-XA coder either, as far as I know. I haven't
+ come across a good description of XA yet.
+ */
+
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <byteswap.h>
#include "../pcm_local.h"
-static short qtab_721[7] = { -124, 80, 178, 246, 300, 349, 400 };
-
-/*
- * Maps G.721 code word to reconstructed scale factor normalized log
- * magnitude values.
- */
-static short _dqlntab[16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
- 425, 373, 323, 273, 213, 135, 4, -2048
-};
-
-/* Maps G.721 code word to log of scale factor multiplier. */
-static short _witab[16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
- 1122, 355, 198, 112, 64, 41, 18, -12
-};
-/*
- * Maps G.721 code words to a set of values whose long and short
- * term averages are computed and then compared to give an indication
- * how stationary (steady state) the signal is.
- */
-static short _fitab[16] = { 0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
- 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0
-};
-
-
-static short power2[15] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
- 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
+/* First table lookup for Ima-ADPCM quantizer */
+static char IndexAdjust[8] = { -1, -1, -1, -1, 2, 4, 6, 8 };
+
+/* Second table lookup for Ima-ADPCM quantizer */
+static short StepSize[89] = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
+ 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
+ 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
+ 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
+ 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
+ 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
+ 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
+ 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
+ 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};
-/*
- * The following is the definition of the state structure
- * used by the G.721/G.723 encoder and decoder to preserve their internal
- * state between successive calls. The meanings of the majority
- * of the state structure fields are explained in detail in the
- * CCITT Recommendation G.721. The field names are essentially indentical
- * to variable names in the bit level description of the coding algorithm
- * included in this Recommendation.
- */
-
-typedef struct g72x_state {
- long yl; /* Locked or steady state step size multiplier. */
- short yu; /* Unlocked or non-steady state step size multiplier. */
- short dms; /* Short term energy estimate. */
- short dml; /* Long term energy estimate. */
- short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
-
- short a[2]; /* Coefficients of pole portion of prediction filter. */
- short b[6]; /* Coefficients of zero portion of prediction filter. */
- short pk[2]; /*
- * Signs of previous two samples of a partially
- * reconstructed signal.
- */
- short dq[6]; /*
- * Previous 6 samples of the quantized difference
- * signal represented in an internal floating point
- * format.
- */
- short sr[2]; /*
- * Previous 2 samples of the quantized difference
- * signal represented in an internal floating point
- * format.
- */
- char td; /* delayed tone detect, new in 1988 version */
-} g72x_state_t;
+typedef struct adpcm_state {
+ int pred_val; /* Calculated predicted value */
+ int step_idx; /* Previous StepSize lookup index */
+ unsigned int io_buffer; /* input / output bit packing buffer */
+ int io_shift; /* shift input / output buffer */
+} adpcm_state_t;
-/*
- * quan()
- *
- * quantizes the input val against the table of size short integers.
- * It returns i if table[i - 1] <= val < table[i].
- *
- * Using linear search for simple coding.
- */
-static inline int quan( int val, short *table, int size)
+static void adpcm_init_state(adpcm_state_t * state_ptr)
{
- int i;
-
- for (i = 0; i < size; i++)
- if (val < *table++)
- break;
- return (i);
+ state_ptr->pred_val = 0;
+ state_ptr->step_idx = 0;
+ state_ptr->io_buffer = 0;
+ state_ptr->io_shift = 4;
}
-/*
- * fmult()
- *
- * returns the integer product of the 14-bit integer "an" and
- * "floating point" representation (4-bit exponent, 6-bit mantissa) "srn".
- */
-static inline int fmult( int an, int srn)
+static inline char adpcm_encoder(int sl, adpcm_state_t * state)
{
- short anmag, anexp, anmant;
- short wanexp, wanmant;
- short retval;
+ short diff; /* Difference between sl and predicted sample */
+ short pred_diff; /* Predicted difference to next sample */
- anmag = (an > 0) ? an : ((-an) & 0x1FFF);
- anexp = quan(anmag, power2, 15) - 6;
- anmant = (anmag == 0) ? 32 :
- (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
- wanexp = anexp + ((srn >> 6) & 0xF) - 13;
-
- wanmant = (anmant * (srn & 077) + 0x30) >> 4;
- retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
- (wanmant >> -wanexp);
-
- return (((an ^ srn) < 0) ? -retval : retval);
-}
+ unsigned char sign; /* sign of diff */
+ short step; /* holds previous StepSize value */
+ unsigned char adjust_idx; /* Index to IndexAdjust lookup table */
-/*
- * predictor_zero()
- *
- * computes the estimated signal from 6-zero predictor.
- *
- */
-static inline int predictor_zero(g72x_state_t *state_ptr)
-{
int i;
- int sezi;
-
- sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
- for (i = 1; i < 6; i++) /* ACCUM */
- sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
- return (sezi);
-}
-
-/*
- * predictor_pole()
- *
- * computes the estimated signal from 2-pole predictor.
- *
- */
-static inline int predictor_pole(g72x_state_t *state_ptr)
-{
- return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
- fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
-}
-/*
- * step_size()
- *
- * computes the quantization step size of the adaptive quantizer.
- *
- */
-static inline int step_size(g72x_state_t *state_ptr)
-{
- int y;
- int dif;
- int al;
-
- if (state_ptr->ap >= 256)
- return (state_ptr->yu);
- else {
- y = state_ptr->yl >> 6;
- dif = state_ptr->yu - y;
- al = state_ptr->ap >> 2;
- if (dif > 0)
- y += (dif * al) >> 6;
- else if (dif < 0)
- y += (dif * al + 0x3F) >> 6;
- return (y);
+ /* Compute difference to previous predicted value */
+ diff = sl - state->pred_val;
+ sign = (diff < 0) ? 0x8 : 0x0;
+ if (sign) {
+ diff = -diff;
}
-}
-
-/*
- * quantize()
- *
- * Given a raw sample, 'd', of the difference signal and a
- * quantization step size scale factor, 'y', this routine returns the
- * ADPCM codeword to which that sample gets quantized. The step
- * size scale factor division operation is done in the log base 2 domain
- * as a subtraction.
- */
-static inline
-int quantize( int d, /* Raw difference signal sample */
- int y, /* Step size multiplier */
- short *table, /* quantization table */
- int size)
-{ /* table size of short integers */
- short dqm; /* Magnitude of 'd' */
- short exp; /* Integer part of base 2 log of 'd' */
- short mant; /* Fractional part of base 2 log */
- short dl; /* Log of magnitude of 'd' */
- short dln; /* Step size scale factor normalized log */
- int i;
/*
- * LOG
+ * This code *approximately* computes:
+ * adjust_idx = diff * 4 / step;
+ * pred_diff = (adjust_idx + 0.5) * step / 4;
*
- * Compute base 2 log of 'd', and store in 'dl'.
+ * But in shift step bits are dropped. The net result of this is
+ * that even if you have fast mul/div hardware you cannot put it to
+ * good use since the fixup would be too expensive.
*/
- dqm = abs(d);
- exp = quan(dqm >> 1, power2, 15);
- mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
- dl = (exp << 7) + mant;
- /*
- * SUBTB
- *
- * "Divide" by step size multiplier.
- */
- dln = dl - (y >> 2);
+ step = StepSize[state->step_idx];
- /*
- * QUAN
- *
- * Obtain codword i for 'd'.
- */
- i = quan(dln, table, size);
- if (d < 0) /* take 1's complement of i */
- return ((size << 1) + 1 - i);
- else if (i == 0) /* take 1's complement of 0 */
- return ((size << 1) + 1); /* new in 1988 */
- else
- return (i);
-}
+ /* Divide and clamp */
+ pred_diff = step >> 3;
+ for (adjust_idx = 0, i = 0x4; i; i >>= 1, step >>= 1) {
+ if (diff >= step) {
+ adjust_idx |= i;
+ diff -= step;
+ pred_diff += step;
+ }
+ }
-/*
- * reconstruct()
- *
- * Returns reconstructed difference signal 'dq' obtained from
- * codeword 'dqln' and quantization step size scale factor 'y'.
- * Multiplication is performed in log base 2 domain as addition.
- */
+ /* Update and clamp previous predicted value */
+ state->pred_val += sign ? -pred_diff : pred_diff;
-static inline
-int reconstruct( int sign, /* 0 for non-negative value */
- int dqln, /* G.72x codeword */
- int y)
-{ /* Step size multiplier */
- short dql; /* Log of 'dq' magnitude */
- short dex; /* Integer part of log */
- short dqt;
- short dq; /* Reconstructed difference signal sample */
-
- dql = dqln + (y >> 2); /* ADDA */
-
- if (dql < 0) {
- return ((sign) ? -0x8000 : 0);
- } else { /* ANTILOG */
- dex = (dql >> 7) & 15;
- dqt = 128 + (dql & 127);
- dq = (dqt << 7) >> (14 - dex);
- return ((sign) ? (dq - 0x8000) : dq);
+ if (state->pred_val > 32767) {
+ state->pred_val = 32767;
+ } else if (state->pred_val < -32768) {
+ state->pred_val = -32768;
}
-}
+ /* Update and clamp StepSize lookup table index */
+ state->step_idx += IndexAdjust[adjust_idx];
-/*
- * update()
- *
- * updates the state variables for each output code
- */
-static
-void update( int y, /* quantizer step size */
- int wi, /* scale factor multiplier */
- int fi, /* for long/short term energies */
- int dq, /* quantized prediction difference */
- int sr, /* reconstructed signal */
- int dqsez, /* difference from 2-pole predictor */
- g72x_state_t *state_ptr)
-{ /* coder state pointer */
- int cnt;
- short mag, exp; /* Adaptive predictor, FLOAT A */
- short a2p = 0; /* LIMC */
- short a1ul; /* UPA1 */
- short pks1; /* UPA2 */
- short fa1;
- char tr; /* tone/transition detector */
- short ylint, thr2, dqthr;
- short ylfrac, thr1;
- short pk0;
-
- pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
-
- mag = dq & 0x7FFF; /* prediction difference magnitude */
- /* TRANS */
- ylint = state_ptr->yl >> 15; /* exponent part of yl */
- ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
- thr1 = (32 + ylfrac) << ylint; /* threshold */
- thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
- dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
- if (state_ptr->td == 0) /* signal supposed voice */
- tr = 0;
- else if (mag <= dqthr) /* supposed data, but small mag */
- tr = 0; /* treated as voice */
- else /* signal is data (modem) */
- tr = 1;
+ if (state->step_idx < 0) {
+ state->step_idx = 0;
+ } else if (state->step_idx > 88) {
+ state->step_idx = 88;
+ }
+ return (sign | adjust_idx);
+}
- /*
- * Quantizer scale factor adaptation.
- */
- /* FUNCTW & FILTD & DELAY */
- /* update non-steady state step size multiplier */
- state_ptr->yu = y + ((wi - y) >> 5);
+static inline int adpcm_decoder(unsigned char code, adpcm_state_t * state)
+{
+ short pred_diff; /* Predicted difference to next sample */
+ short step; /* holds previous StepSize value */
+ char sign;
- /* LIMB */
- if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
- state_ptr->yu = 544;
- else if (state_ptr->yu > 5120)
- state_ptr->yu = 5120;
+ int i;
- /* FILTE & DELAY */
- /* update steady state step size multiplier */
- state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
+ /* Separate sign and magnitude */
+ sign = code & 0x8;
+ code &= 0x7;
/*
- * Adaptive predictor coefficients.
+ * Computes pred_diff = (code + 0.5) * step / 4,
+ * but see comment in adpcm_coder.
*/
- if (tr == 1) { /* reset a's and b's for modem signal */
- state_ptr->a[0] = 0;
- state_ptr->a[1] = 0;
- state_ptr->b[0] = 0;
- state_ptr->b[1] = 0;
- state_ptr->b[2] = 0;
- state_ptr->b[3] = 0;
- state_ptr->b[4] = 0;
- state_ptr->b[5] = 0;
- } else { /* update a's and b's */
- pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
-
- /* update predictor pole a[1] */
- a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
- if (dqsez != 0) {
- fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
- if (fa1 < -8191) /* a2p = function of fa1 */
- a2p -= 0x100;
- else if (fa1 > 8191)
- a2p += 0xFF;
- else
- a2p += fa1 >> 5;
-
- if (pk0 ^ state_ptr->pk[1])
- /* LIMC */
- if (a2p <= -12160)
- a2p = -12288;
- else if (a2p >= 12416)
- a2p = 12288;
- else
- a2p -= 0x80;
- else if (a2p <= -12416)
- a2p = -12288;
- else if (a2p >= 12160)
- a2p = 12288;
- else
- a2p += 0x80;
- }
- /* TRIGB & DELAY */
- state_ptr->a[1] = a2p;
-
- /* UPA1 */
- /* update predictor pole a[0] */
- state_ptr->a[0] -= state_ptr->a[0] >> 8;
- if (dqsez != 0) {
- if (pks1 == 0)
- state_ptr->a[0] += 192;
- else
- state_ptr->a[0] -= 192;
- }
+ step = StepSize[state->step_idx];
- /* LIMD */
- a1ul = 15360 - a2p;
- if (state_ptr->a[0] < -a1ul)
- state_ptr->a[0] = -a1ul;
- else if (state_ptr->a[0] > a1ul)
- state_ptr->a[0] = a1ul;
-
- /* UPB : update predictor zeros b[6] */
- for (cnt = 0; cnt < 6; cnt++) {
- state_ptr->b[cnt] -=
- state_ptr->b[cnt] >> 8;
- if (dq & 0x7FFF) { /* XOR */
- if ((dq ^ state_ptr->dq[cnt]) >= 0)
- state_ptr->b[cnt] += 128;
- else
- state_ptr->b[cnt] -= 128;
- }
+ /* Compute difference and new predicted value */
+ pred_diff = step >> 3;
+ for (i = 0x4; i; i >>= 1, step >>= 1) {
+ if (code & i) {
+ pred_diff += step;
}
}
+ state->pred_val += (sign) ? -pred_diff : pred_diff;
- for (cnt = 5; cnt > 0; cnt--)
- state_ptr->dq[cnt] = state_ptr->dq[cnt - 1];
- /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
- if (mag == 0) {
- state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
- } else {
- exp = quan(mag, power2, 15);
- state_ptr->dq[0] = (dq >= 0) ?
- (exp << 6) + ((mag << 6) >> exp) :
- (exp << 6) + ((mag << 6) >> exp) - 0x400;
+ /* Clamp output value */
+ if (state->pred_val > 32767) {
+ state->pred_val = 32767;
+ } else if (state->pred_val < -32768) {
+ state->pred_val = -32768;
}
- state_ptr->sr[1] = state_ptr->sr[0];
- /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
- if (sr == 0) {
- state_ptr->sr[0] = 0x20;
- } else if (sr > 0) {
- exp = quan(sr, power2, 15);
- state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
- } else if (sr > -32768) {
- mag = -sr;
- exp = quan(mag, power2, 15);
- state_ptr->sr[0] =
- (exp << 6) + ((mag << 6) >> exp) - 0x400;
- } else
- state_ptr->sr[0] = 0xFC20;
-
- /* DELAY A */
- state_ptr->pk[1] = state_ptr->pk[0];
- state_ptr->pk[0] = pk0;
-
- /* TONE */
- if (tr == 1) /* this sample has been treated as data */
- state_ptr->td = 0; /* next one will be treated as voice */
- else if (a2p < -11776) /* small sample-to-sample correlation */
- state_ptr->td = 1; /* signal may be data */
- else /* signal is voice */
- state_ptr->td = 0;
-
- /*
- * Adaptation speed control.
- */
- state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
- state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
-
- if (tr == 1)
- state_ptr->ap = 256;
- else if (y < 1536) /* SUBTC */
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else if (state_ptr->td == 1)
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
- (state_ptr->dml >> 3))
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else
- state_ptr->ap += (-state_ptr->ap) >> 4;
-}
+ /* Find new StepSize index value */
+ state->step_idx += IndexAdjust[code];
-/*
- * g72x_init_state()
- *
- * This routine initializes and/or resets the g72x_state structure
- * pointed to by 'state_ptr'.
- * All the initial state values are specified in the CCITT G.721 document.
- */
-static inline void g72x_init_state(g72x_state_t *state_ptr)
-{
- int cnta;
-
- state_ptr->yl = 34816;
- state_ptr->yu = 544;
- state_ptr->dms = 0;
- state_ptr->dml = 0;
- state_ptr->ap = 0;
- for (cnta = 0; cnta < 2; cnta++) {
- state_ptr->a[cnta] = 0;
- state_ptr->pk[cnta] = 0;
- state_ptr->sr[cnta] = 32;
- }
- for (cnta = 0; cnta < 6; cnta++) {
- state_ptr->b[cnta] = 0;
- state_ptr->dq[cnta] = 32;
+ if (state->step_idx < 0) {
+ state->step_idx = 0;
+ } else if (state->step_idx > 88) {
+ state->step_idx = 88;
}
- state_ptr->td = 0;
-}
-
-/*
- * g721_encoder()
- *
- * Encodes the input vale of linear PCM and returns the resulting code.
- */
-static inline int g721_encoder( int sl, g72x_state_t *state_ptr)
-{
- short sezi, se, sez; /* ACCUM */
- short d; /* SUBTA */
- short sr; /* ADDB */
- short y; /* MIX */
- short dqsez; /* ADDC */
- short dq, i;
-
- sl >>= 2; /* 14-bit dynamic range */
-
- sezi = predictor_zero(state_ptr);
- sez = sezi >> 1;
- se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
-
- d = sl - se; /* estimation difference */
-
- /* quantize the prediction difference */
- y = step_size(state_ptr); /* quantizer step size */
- i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */
-
- dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
-
- sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
-
- dqsez = sr + sez - se; /* pole prediction diff. */
-
- update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
-
- return (i);
-}
-
-/*
- * g721_decoder()
- *
- * Description:
- *
- * Decodes a 4-bit code of G.721 encoded data of i and
- * returns the resulting linear PCM
- */
-static inline int g721_decoder( int i, g72x_state_t *state_ptr)
-{
- short sezi, sei, sez, se; /* ACCUM */
- short y; /* MIX */
- short sr; /* ADDB */
- short dq;
- short dqsez;
-
- i &= 0x0f; /* mask to get proper bits */
- sezi = predictor_zero(state_ptr);
- sez = sezi >> 1;
- sei = sezi + predictor_pole(state_ptr);
- se = sei >> 1; /* se = estimated signal */
-
- y = step_size(state_ptr); /* dynamic quantizer step size */
-
- dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
-
- sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
-
- dqsez = sr - se + sez; /* pole prediction diff. */
-
- update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
-
- return (sr << 2); /* sr was 14-bit dynamic range */
+ return (state->pred_val);
}
/*
_ADPCM_U16LE,
_ADPCM_S16BE,
_ADPCM_U16BE
-} combination_t;
-
+} combination_t;
+
struct adpcm_private_data {
combination_t cmd;
- g72x_state_t state;
+ adpcm_state_t state;
};
-static void adpcm_conv_u8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_u8bit_adpcm(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
unsigned int pcm;
while (size-- > 0) {
pcm = ((*src_ptr++) ^ 0x80) << 8;
- *dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
+
+ state_ptr->io_buffer |=
+ adpcm_encoder((signed short) (pcm),
+ state_ptr) << state_ptr->io_shift;
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr++ = state_ptr->io_buffer & 0xff;
+ state_ptr->io_buffer = 0;
+ }
+ state_ptr->io_shift ^= 4;
+ }
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr = state_ptr->io_buffer & 0xf0;
}
}
-static void adpcm_conv_s8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_s8bit_adpcm(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
unsigned int pcm;
while (size-- > 0) {
pcm = *src_ptr++ << 8;
- *dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
+
+ state_ptr->io_buffer |=
+ adpcm_encoder((signed short) (pcm),
+ state_ptr) << state_ptr->io_shift;
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr++ = state_ptr->io_buffer & 0xff;
+ state_ptr->io_buffer = 0;
+ }
+ state_ptr->io_shift ^= 4;
+ }
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr = state_ptr->io_buffer & 0xf0;
}
}
-static void adpcm_conv_s16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+static void adpcm_conv_s16bit_adpcm(adpcm_state_t * state_ptr,
+ unsigned short *src_ptr,
unsigned char *dst_ptr, size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_encoder((signed short)(*src_ptr++), state_ptr);
+ while (size-- > 0) {
+ state_ptr->io_buffer |=
+ adpcm_encoder((signed short) (*src_ptr++),
+ state_ptr) << state_ptr->io_shift;
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr++ = state_ptr->io_buffer & 0xff;
+ state_ptr->io_buffer = 0;
+ }
+ state_ptr->io_shift ^= 4;
+ }
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr = state_ptr->io_buffer & 0xf0;
+ }
}
-static void adpcm_conv_s16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
- unsigned char *dst_ptr, size_t size)
+static void adpcm_conv_s16bit_swap_adpcm(adpcm_state_t * state_ptr,
+ unsigned short *src_ptr,
+ unsigned char *dst_ptr,
+ size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_encoder((signed short)(bswap_16(*src_ptr++)), state_ptr);
+ while (size-- > 0) {
+ state_ptr->io_buffer |=
+ adpcm_encoder((signed short) (bswap_16(*src_ptr++)),
+ state_ptr) << state_ptr->io_shift;
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr++ = state_ptr->io_buffer & 0xff;
+ state_ptr->io_buffer = 0;
+ }
+ state_ptr->io_shift ^= 4;
+ }
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr = state_ptr->io_buffer & 0xf0;
+ }
}
-static void adpcm_conv_u16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
+static void adpcm_conv_u16bit_adpcm(adpcm_state_t * state_ptr,
+ unsigned short *src_ptr,
unsigned char *dst_ptr, size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_encoder((signed short)((*src_ptr++) ^ 0x8000), state_ptr);
+ while (size-- > 0) {
+ state_ptr->io_buffer |=
+ adpcm_encoder((signed short) ((*src_ptr++) ^ 0x8000),
+ state_ptr) << state_ptr->io_shift;
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr++ = state_ptr->io_buffer & 0xff;
+ state_ptr->io_buffer = 0;
+ }
+ state_ptr->io_shift ^= 4;
+ }
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr = state_ptr->io_buffer & 0xf0;
+ }
}
-static void adpcm_conv_u16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
- unsigned char *dst_ptr, size_t size)
+static void adpcm_conv_u16bit_swap_adpcm(adpcm_state_t * state_ptr,
+ unsigned short *src_ptr,
+ unsigned char *dst_ptr,
+ size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_encoder((signed short)(bswap_16((*src_ptr++) ^ 0x8000)), state_ptr);
+ while (size-- > 0) {
+ state_ptr->io_buffer |= adpcm_encoder((signed short)
+
+ (bswap_16
+ ((*src_ptr++) ^
+ 0x8000)),
+ state_ptr) <<
+ state_ptr->io_shift;
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr++ = state_ptr->io_buffer & 0xff;
+ state_ptr->io_buffer = 0;
+ }
+ state_ptr->io_shift ^= 4;
+ }
+ if (!(state_ptr->io_shift)) {
+ *dst_ptr = state_ptr->io_buffer & 0xf0;
+ }
}
-static void adpcm_conv_adpcm_u8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_u8bit(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_decoder((*src_ptr++) >> 8, state_ptr) ^ 0x80;
+ while (size-- > 0) {
+ if (state_ptr->io_shift) {
+ state_ptr->io_buffer = *src_ptr++;
+ }
+ *dst_ptr++ =
+ (adpcm_decoder
+ ((state_ptr->io_buffer >> state_ptr->io_shift) & 0xf,
+ state_ptr) >> 8) ^ 0x80;
+ state_ptr->io_shift ^= 4;
+ }
}
-static void adpcm_conv_adpcm_s8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_s8bit(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) >> 8;
+ while (size-- > 0) {
+ if (state_ptr->io_shift) {
+ state_ptr->io_buffer = *src_ptr++;
+ }
+ *dst_ptr++ =
+ adpcm_decoder(
+ (state_ptr->io_buffer >> state_ptr->
+ io_shift) & 0xf, state_ptr) >> 8;
+ state_ptr->io_shift ^= 4;
+ }
}
-static void adpcm_conv_adpcm_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_s16bit(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
unsigned short *dst_ptr, size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr);
+ while (size-- > 0) {
+ if (state_ptr->io_shift) {
+ state_ptr->io_buffer = *src_ptr++;
+ }
+ *dst_ptr++ =
+ adpcm_decoder(
+ (state_ptr->io_buffer >> state_ptr->
+ io_shift) & 0xf, state_ptr);
+ state_ptr->io_shift ^= 4;
+ }
}
-static void adpcm_conv_adpcm_swap_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
- unsigned short *dst_ptr, size_t size)
+static void adpcm_conv_adpcm_swap_s16bit(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
+ unsigned short *dst_ptr,
+ size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr));
+ while (size-- > 0) {
+ if (state_ptr->io_shift) {
+ state_ptr->io_buffer = *src_ptr++;
+ }
+ *dst_ptr++ =
+ bswap_16(adpcm_decoder
+ ((state_ptr->io_buffer >> state_ptr->io_shift)
+ & 0xf, state_ptr));
+ state_ptr->io_shift ^= 4;
+ }
}
-static void adpcm_conv_adpcm_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
+static void adpcm_conv_adpcm_u16bit(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
unsigned short *dst_ptr, size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) ^ 0x8000;
+ while (size-- > 0) {
+ if (state_ptr->io_shift) {
+ state_ptr->io_buffer = *src_ptr++;
+ }
+ *dst_ptr++ =
+ adpcm_decoder(
+ (state_ptr->io_buffer >> state_ptr->
+ io_shift) & 0xf, state_ptr) ^ 0x8000;
+ state_ptr->io_shift ^= 4;
+ }
}
-static void adpcm_conv_adpcm_swap_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
- unsigned short *dst_ptr, size_t size)
+static void adpcm_conv_adpcm_swap_u16bit(adpcm_state_t * state_ptr,
+ unsigned char *src_ptr,
+ unsigned short *dst_ptr,
+ size_t size)
{
- while (size-- > 0)
- *dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr) ^ 0x8000);
+ while (size-- > 0) {
+ if (state_ptr->io_shift) {
+ state_ptr->io_buffer = *src_ptr++;
+ }
+ *dst_ptr++ =
+ bswap_16(adpcm_decoder
+ ((state_ptr->io_buffer >> state_ptr->io_shift)
+ & 0xf, state_ptr) ^ 0x8000);
+ state_ptr->io_shift ^= 4;
+ }
}
-static ssize_t adpcm_transfer(snd_pcm_plugin_t *plugin,
+static ssize_t adpcm_transfer(snd_pcm_plugin_t * plugin,
char *src_ptr, size_t src_size,
char *dst_ptr, size_t dst_size)
{
struct adpcm_private_data *data;
if (plugin == NULL || src_ptr == NULL || src_size < 0 ||
- dst_ptr == NULL || dst_size < 0)
+ dst_ptr == NULL || dst_size < 0)
return -EINVAL;
if (src_size == 0)
return 0;
- data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+ data = (struct adpcm_private_data *)
+ snd_pcm_plugin_extra_data(plugin);
if (data == NULL)
return -EINVAL;
switch (data->cmd) {
case _U8_ADPCM:
- if (dst_size < src_size)
+ if ((dst_size << 1) < src_size)
return -EINVAL;
- adpcm_conv_u8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
- return src_size;
+ adpcm_conv_u8bit_adpcm(&data->state, src_ptr, dst_ptr,
+ src_size);
+ return src_size >> 1;
case _S8_ADPCM:
- if (dst_size < src_size)
+ if ((dst_size << 1) < src_size)
return -EINVAL;
- adpcm_conv_s8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
- return src_size;
+ adpcm_conv_s8bit_adpcm(&data->state, src_ptr, dst_ptr,
+ src_size);
+ return src_size >> 1;
case _S16LE_ADPCM:
- if ((dst_size << 1) < src_size)
+ if ((dst_size << 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_s16bit_adpcm(&data->state, (short *) src_ptr,
+ dst_ptr, src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_s16bit_swap_adpcm(&data->state,
+ (short *) src_ptr, dst_ptr,
+ src_size >> 1);
#else
#error "Have to be coded..."
#endif
- return src_size >> 1;
+ return src_size >> 2;
case _U16LE_ADPCM:
- if ((dst_size << 1) < src_size)
+ if ((dst_size << 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_u16bit_adpcm(&data->state, (short *) src_ptr,
+ dst_ptr, src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_u16bit_swap_adpcm(&data->state,
+ (short *) src_ptr, dst_ptr,
+ src_size >> 1);
#else
#error "Have to be coded..."
#endif
- return src_size >> 1;
+ return src_size >> 2;
case _S16BE_ADPCM:
- if ((dst_size << 1) < src_size)
+ if ((dst_size << 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_s16bit_swap_adpcm(&data->state,
+ (short *) src_ptr, dst_ptr,
+ src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_s16bit_adpcm(&data->state, (short *) src_ptr,
+ dst_ptr, src_size >> 1);
#else
#error "Have to be coded..."
#endif
- return src_size >> 1;
+ return src_size >> 2;
case _U16BE_ADPCM:
- if ((dst_size << 1) < src_size)
+ if ((dst_size << 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_u16bit_swap_adpcm(&data->state,
+ (short *) src_ptr, dst_ptr,
+ src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
+ adpcm_conv_u16bit_adpcm(&data->state, (short *) src_ptr,
+ dst_ptr, src_size >> 1);
#else
#error "Have to be coded..."
#endif
- return src_size >> 1;
+ return src_size >> 2;
case _ADPCM_U8:
- if (dst_size < src_size)
+ if ((dst_size >> 1) < src_size)
return -EINVAL;
- adpcm_conv_adpcm_u8bit(&data->state, src_ptr, dst_ptr, src_size);
- return src_size;
+ adpcm_conv_adpcm_u8bit(&data->state, src_ptr, dst_ptr,
+ src_size << 1);
+ return src_size << 1;
case _ADPCM_S8:
- if (dst_size < src_size)
+ if ((dst_size >> 1) < src_size)
return -EINVAL;
- adpcm_conv_adpcm_s8bit(&data->state, src_ptr, dst_ptr, src_size);
- return src_size;
+ adpcm_conv_adpcm_s8bit(&data->state, src_ptr, dst_ptr,
+ src_size << 1);
+ return src_size << 1;
case _ADPCM_S16LE:
- if ((dst_size >> 1) < src_size)
+ if ((dst_size >> 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_s16bit(&data->state, src_ptr,
+ (short *) dst_ptr, src_size << 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr,
+ (short *) dst_ptr,
+ src_size << 1);
#else
#error "Have to be coded..."
#endif
- return src_size << 1;
+ return src_size << 2;
case _ADPCM_U16LE:
- if ((dst_size >> 1) < src_size)
+ if ((dst_size >> 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_u16bit(&data->state, src_ptr,
+ (short *) dst_ptr, src_size << 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr,
+ (short *) dst_ptr,
+ src_size << 1);
#else
#error "Have to be coded..."
#endif
- return src_size << 1;
+ return src_size << 2;
case _ADPCM_S16BE:
- if ((dst_size >> 1) < src_size)
+ if ((dst_size >> 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr,
+ (short *) dst_ptr,
+ src_size << 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_s16bit(&data->state, src_ptr,
+ (short *) dst_ptr, src_size << 1);
#else
#error "Have to be coded..."
#endif
- return src_size << 1;
+ return src_size << 2;
case _ADPCM_U16BE:
- if ((dst_size >> 1) < src_size)
+ if ((dst_size << 2) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
- adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr,
+ (short *) dst_ptr,
+ src_size << 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
- adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
+ adpcm_conv_adpcm_u16bit(&data->state, src_ptr,
+ (short *) dst_ptr, src_size << 1);
#else
#error "Have to be coded..."
#endif
- return dst_size << 1;
+ return src_size << 2;
default:
return -EIO;
}
}
-static int adpcm_action(snd_pcm_plugin_t *plugin, snd_pcm_plugin_action_t action)
+static int adpcm_action(snd_pcm_plugin_t * plugin,
+ snd_pcm_plugin_action_t action)
{
struct adpcm_private_data *data;
if (plugin == NULL)
return -EINVAL;
- data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+ data = (struct adpcm_private_data *)
+ snd_pcm_plugin_extra_data(plugin);
if (action == PREPARE)
- g72x_init_state(&data->state);
- return 0; /* silenty ignore other actions */
+ adpcm_init_state(&data->state);
+ return 0; /* silenty ignore other actions */
}
-static ssize_t adpcm_src_size(snd_pcm_plugin_t *plugin, size_t size)
+static ssize_t adpcm_src_size(snd_pcm_plugin_t * plugin, size_t size)
{
struct adpcm_private_data *data;
if (!plugin || size <= 0)
return -EINVAL;
- data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+ data = (struct adpcm_private_data *)
+ snd_pcm_plugin_extra_data(plugin);
switch (data->cmd) {
case _U8_ADPCM:
case _S8_ADPCM:
+ return size * 2;
case _ADPCM_U8:
case _ADPCM_S8:
- return size;
+ return size / 2;
case _U16LE_ADPCM:
case _S16LE_ADPCM:
case _U16BE_ADPCM:
case _S16BE_ADPCM:
- return size * 2;
+ return size * 4;
case _ADPCM_U16LE:
case _ADPCM_S16LE:
case _ADPCM_U16BE:
case _ADPCM_S16BE:
- return size / 2;
+ return size / 4;
default:
return -EIO;
}
}
-static ssize_t adpcm_dst_size(snd_pcm_plugin_t *plugin, size_t size)
+static ssize_t adpcm_dst_size(snd_pcm_plugin_t * plugin, size_t size)
{
struct adpcm_private_data *data;
if (!plugin || size <= 0)
return -EINVAL;
- data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+ data = (struct adpcm_private_data *)
+ snd_pcm_plugin_extra_data(plugin);
switch (data->cmd) {
case _U8_ADPCM:
case _S8_ADPCM:
+ return size / 2;
case _ADPCM_U8:
case _ADPCM_S8:
- return size;
+ return size * 2;
case _U16LE_ADPCM:
case _S16LE_ADPCM:
case _U16BE_ADPCM:
case _S16BE_ADPCM:
- return size / 2;
+ return size / 4;
case _ADPCM_U16LE:
case _ADPCM_S16LE:
case _ADPCM_U16BE:
case _ADPCM_S16BE:
- return size * 2;
+ return size * 4;
default:
return -EIO;
}
}
-
-int snd_pcm_plugin_build_adpcm(snd_pcm_format_t *src_format,
- snd_pcm_format_t *dst_format,
- snd_pcm_plugin_t **r_plugin)
+
+int snd_pcm_plugin_build_adpcm(snd_pcm_format_t * src_format,
+ snd_pcm_format_t * dst_format,
+ snd_pcm_plugin_t ** r_plugin)
{
struct adpcm_private_data *data;
snd_pcm_plugin_t *plugin;
sizeof(struct adpcm_private_data));
if (plugin == NULL)
return -ENOMEM;
- data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
+ data = (struct adpcm_private_data *)
+ snd_pcm_plugin_extra_data(plugin);
data->cmd = cmd;
plugin->transfer = adpcm_transfer;
plugin->src_size = adpcm_src_size;